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LElTER TO THE EDITOR 

The phonon density of states obtained from inverting specific 
heat data 

S E Regan and G J Morgan 
The Physics Depanment. The University of h d s ,  Leeds LS2 9JT UK 

Received 18 November 1991 

AbslracL The inversion of specific heat data to obtain lhe phonon density of states has 
been an imporranr problem for many years. We present a new very simple and flexible 
iterative procedure and apply i t  10 Einstein and Debye models. Excellcni results are 
obtained and the method muld be simply extended to more complex situations using 
improved numerical accuracy. 

The specific heat of a harmonic solid as a function of temperature, C ( T ) ,  in principle 
determines the phonon density of states g(w)  in a relationship 

C ( T )  = l m g ( w ) C d W / T ) d U  (1) 

where 

C,(w/T) = (w/T)Zexp(w/T)(exp(w/T) - I)-’ (2)  

is the Einstein specific heat, using units in which ti = 1, IC,  = 1 and frequencies in 
kelvin (Loram 1986). The problem of inverting (1) to obtain g(w) has a long history, 
which has been extensively reviewed recently by Loram (1986) with many references. 
He has presented a useful numerical method, which no doubt can be improved using 
refined numerical techniques. One failure of Loram’s results, which we will avoid, is 
the density of states becoming negative. The assumption that g(w) can be obtained 
from the specific heat does depend, of course, on the neglect of anharmonic effects, 
and in metals or semiconductors one must remove the electronic contributions either 
by experiment or from theoretical estimates of the electronic effects. Indeed in 
general one would also have to remove anharmonic effects by theroetical estimates. 
However, it is not necessary to know C ( T )  over the complete range of temperature 
up to, say, the melting point, so that one can in principle minimize anharmonic effects 
by using low-temperature data. 

If we differentiate (1) with respect to T then 

(3) 
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and the derivative of the function in brackets on the right-hand side gives rise to a 
sharpley peaked function F ( w )  for w - T at low temperatures. We then rewrite (3) 
as 

where we have set z = w'T, T = w / a ,  a is an adjustable parameter and 

m 

I = 1 z2ez(ez - 1)'dz. 

This is a trivial identity but we can start an interative solution by writing g(w) = 
I-1 d C ( w / a ) / d ( w / a ) .  

We now have to choose an upper limit for the numerical integration over z, which 
in general would be based on physical grounds corresponding to the highest value of 
the frequency (wmax) to be expected in a system. I n  our tests on the Einstein and 
Debye models we have chosen the maximum frequency to be six times the Einstein 
temperature (e,) and three times the Debye temperature (6,). 

The choice of a then determines the highest temperature needed in the specific 
heat data, namely T,,, = #/a. Although a value of 01 E 3 locates the peak in 
F ( w )  at low temperatures, we find a value of a = 8 most satisfactory in practice 
in obtaining rapid convergence at low temperatures. There is considerable room for 
adjusting dmIx and a in connection with the accuracy with which one performs the 
integral in equation (4). 

We have tested the method using 300 equally spaced points in the range w = 0 
to w = U,,, and Simpson's rule to perform the integrals. The number of points 
used places constraints on the accuracy to be achieved, but our present intention is to 
demonstrate the usefulness of the method rather than push it to the limit. We have 
already mentioned the possibility that the density of states could 'stray' and become 
negative and we prevent this, and the associated possible instability, by always taking 
the modulus of the density of states at any given iteration. Finally, although it is 
not necessary to ensure that the density of States is normalized we found it useful 
to truncate the density of states at dmax so that at any given iteration the dcnsity of 
states is normalized. The normalization is not exact at any state however, because we 
are using a discrete set of values for z in the integration process. 

I n  figure 1 we show our results after 100 iterations for the Einstein model with 
BE = 50 K Further iterations hardly change the results, reflecting the fact that we are 
integrating using a finite mesh. The resulting specific heat is shown in figure 2 and 
the discrepancy with the exact behaviour for high T is simply due to the density of 
states being not exactly normalized because of the finite mcsh. This is more obvious 
in the case of a 6-function-like density of sates, as opposed to that of the Debye 
model. 

In figure 3 we show results for a Debye temperature 0, = 100 K. The full line 
denotes the Debye model; the lower dashed curve shows the very first approximation 
with the upper chain curve showing the result of iterating equation (4) one hundred 
times. 

The main discrepancy was close to 0, and further iterations do not improve 
matters significantly in this region. Again this difference between the exact and 
computed values comes about from the numerical accuracy of the calculation. In 
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Figure 1. The approximate form of the densily of 
States for the Einstein model with BE = 50 K. The 
mils correspond to ks = 1 and h = 1. 

Figure 2. A comparison between the exact and 
computed specific heat of lhe Einstein model after 
100 ilerations. The solid line is the exacl form. 

,deal 

......_.... 
- 71 3 9 P =. 2o 

- 
'$ 

! ,,,.,.... ....._._...,.; I" 
E ; 10 

,....'+ i ~ 

,_..- i ; 
i ,... ,...' 

0 
50 100 150 0 100 200 3w 

/... .-' ...... 

Frequency [Temperature units] Temperatwe [K] 

Figure 3. The appmximale form of the density 
of states (chain curve) corresponding to a Debye 
temperalure 00 = 100 K. The solid line is the 
exact form while the dashed curve is lhe vely firs1 
approximation. 

Figure 4. A comparison between the exact and 
cornpuled specific heat for the Debye model after 
100 iteralions, The solid line is the exact form. 

particular, the number of points used in the integration over z is important. Indeed, 
decreasing the mesh size increases the convergence of the calculated spectrum. The 
behaviour of the specific heat is shown in figure 4, in comparison with the exact form. 

The main point of this letter is to demonstrate what can be achieved in a very 
simple fashion-which is very encouraging-and to illustrate the accuracy needed in 
an experiment to be able to obtain detailed information on the density of states. 
Finally it should be pointed out that the thermal conductivity could be treated in a 



L198 Leiier io the Ediiot 

very similar fashion. K ( T )  is given by 

where 4 ( w )  determines the contribution made by the various modes to the total 
conductivity. 
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